Grade Three Bridges Correlations & Pacing							
Standard	Number Corner	Work Place	Introduced (I)	Developed (D)	Mastered (M)	Reviewed Extended (R/E)	
Operations & Algebraic Thinking							
A. Represent and solve problems involving multiplic	ation and division						
3.OA.A.1: Interpret products of whole numbers,	Sept: (CG, CF)	2A	Unit 5	Unit 5	Unit 5	Gr. 4	
e.g., interpret 5 x 7 as the total of objects in 5	Oct: (CF)	2B	Unit 7	Unit 7			
groups of 7 objects each.	Nov: (CF)	2C					
	Dec: (SP)	5A					
3.0A.A.2: Interpret whole-number quotients of	May: (SP)	5A			Unit 5	Gr. 4	
whole numbers, e.g., interpret 56 \div 8 as the		5C					
number of objects in each share when 56 objects							
are partitioned equally into 8 shares, or as a							
number of shares when 56 objects are partitioned							
into equal shares of 8 objects each.							
3.OA.A.3 : Use multiplication and division within	Nov. (SP)	2A	Unit 5	Unit 5	Unit 5	Gr. 4	
100 to solve word problems in situations involving		5A					
equal groups, arrays, and measurement quantities,							
e.g., by using drawings and equations with a symbol							
for the unknown number to represent the problem.							
3.OA.A.4: Determine the unknown whole number	Nov: (SP)		Unit 5	Unit 5	Unit 5	Gr. 4	
in a multiplication or division equation relating	Apr: (CF, SP)						
three whole numbers.	May: (CF, SP)						
B. Understand properties of multiplication and the re	elationship between mu	ltiplication and division	on				
3.OA.B.5: Apply properties of operations as	Nov: (CG, CC, CF)	2C	Unit 7	Unit 7		Gr. 4	
strategies to multiply and divide. Examples: If 6 x 4	Dec: (SP)	2D					
= 24 is known, then $4 \times 6 = 24$ is also known.	Mar: (CF)						
(Commutative property of multiplication.) 3 x 5 x 2	Apr: (CF, SP)						
can be found by $3 \times 5 = 15$ then $15 \times 2 = 30$, or by 5	May: (CF, SP)						
$x 2 = 10$ then $3 \times 10 = 30$. (Associative property of							
multiplication.) Knowing that $8 \times 5 = 40$ and $8 \times 2 =$							
16 , one can find 8 x 7 as 8 x (5 + 2) = (8 x 5) + (8 x 2)							
= 40 + 16 = 56. (Distributive property.)							

3.OA.B.6: Understand division as an unknown-	Jan: (CF)	5B	Unit 5		Unit 5	Gr. 4
factor problem. For example, divide 32 ÷ 8 by	Feb: (CF)	5D				
finding the number that makes 32 when multiplied	Mar: (CF)					
by 8.	Apr: (CF, SP)					
	May: (CF, SP)					
C. Multiply and divide within 100						
3.OA.C.7: Fluently multiply and divide within 100,	Nov: (CG, CF, CC)	2C	Unit 5	Unit 5		Gr. 4
using strategies such as the relationship between	Dec: (CC, CF, SP)	2D	Unit 7	Unit 7		
multiplication and division (e.g., knowing that 8 x 5	Jan (CC, CF)	5B				
= 40, one knows $40 \div 5 = 8$) or properties of	Feb: (CF)	5C				
operations. By the end of Grade 3, know from	Mar: (CF)	5D				
memory all products of one-digit numbers.	Apr: (CF, SP)					
	May: (CC, CF)					
3.OA.C.8: Solve two-step word problems using the	Oct: (NL)	5A	Unit 1			Gr. 4
four operations. Represent these problems using	Jan: (SP)		Unit 2			
equations with a letter standing for the unknown			Unit 3			
quantity. Assess the reasonableness of answers			Unit 4			
using mental computations and estimations			Unit 5			
strategies including rounding.			Unit 7			
3.0A.C.9: Identify arithmetic patterns (including	Sep: (NL)	1A			Unit 3	Gr. 4
patterns in the addition table or multiplication	Dec: (CF, SP)					
table), and explain them using properties of	Jan: (CF)					
operations	Feb: (CF)					
	Mar: (CF)					
	Apr: (CF)					
	May: (CC, CF)					

Number & Operations in Base Ten				
A. Use place value understanding and properties of op-	perations to perform n	nulti-digit arithmetic		
3.NBT.A.1: Use place value understanding to round	Nov: (NL)	3A	NC	Gr. 4
whole numbers to the nearest 10 or 100	Dec: (CC, NL)	3C		
		3D		

	T		1		1	T
3.NBT.A.2 : Fluently add and subtract within 1000	Sep: (SP)	1E			Unit 3	Gr. 4
using strategies and algorithms based on place	Oct: (CC, NL, SP)	1F				
value, properties of operations, and/or the	Nov: (NL, SP)	1G				
relationship between addition and subtraction.	Dec: (CC, NL)	3B				
	Jan: (CC)	3D				
		4C				
3.NBT.A.3 : Multiply one-digit whole numbers by	Feb: (CC, SP)					
multiples of 10 in the range 10-90 (e.g., 9×80 , 5×80						
60) using strategies based on place value and						
properties of operations.						
Number & Operations Fractions						
A. Develop understanding of fractions as numbers						
3.NF.A.1: Understand a fraction 1/b as the quantity	Oct: (CC)	4D	Unit 4	Unit 4	Unit 7	Gr. 4
formed by 1 part when a whole is partitioned into b	Nov: (CC)	7A				
equal parts; understand a fraction as a/b as the	Dec: (CG)	7B				
quantity formed by a parts of size 1/b. Grade 3	Jan: (CG)	8D				
expectations in this domain are limited to fractions	Feb: (CC)					
with denominators 2, 3, 4, 6, and 8.	Apr: (CC, CG, NL)					
3.NF.A.2: Understand a fraction as a number on a	Jan: (NL)	7B	Unit 4	Unit 4		
number line; represent fractions on a number line	Feb: (NL)					
diagram.	Mar: (NL)					
a. Represent a fraction 1/b on a number line	Apr: (NL)					
diagram by defining the interval from 0 to 1	May (NL)					
as the whole and partitioning it into b equal						
parts. Recognize that each part has size 1/b						
and that the endpoint of the part based at 0						
locates the number 1/b on the number line.						
b. Represent a fraction a/b on a number line						
diagram by marking off lengths 1/b from 0.						
Recognize that the resulting interval has						
size a/b and that its endpoint locates the						
number a/b on the number line.						
3.NF.A.3: Explain equivalence of fractions in special	Nov: (CC)	4D	Unit 4	Unit 4		Grade 4
cases, and compare fractions by reasoning about	Jan: (NL)	7A	31110	O.IIIC 1		3.446
their size.	Julii (IVL)	7B				
a. Understand two fractions as equivalent		70				
(equal) if they are the same size, or same						
point on the number line.						
•						
b. Recognize and generate simple equivalent						
fractions (e.g., $\frac{1}{2}$ = 2/4, 4/6 = 2/3). Explain	<u> </u>					

why the fractions are equivalent, e.g., by using a visual fraction model. c. Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. d. Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model. Measurement & Data						
A. Solve problems involving measurement and estim	nation of intervals of ti	me. liquid volumes, and	I masses of objects	<u> </u>		
3.MD.A.1: Tell and write time to the nearest minute and measure time intervals in minutes. Solve word problems involving addition and subtraction of time intervals in minutes, e.g., by representing the problem on a number line design.	Jan: (CC) Mar: (CG) Apr: (CC)	4A 8C	Unit 4	Unit 4		Gr. 4
3.MD.A.2: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters. Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem.	Oct: (CC0 Dec: (CC) Feb: (SP)	4B 8A			Unit 4	Gr. 4
B. Represent and interpret data 3.MD.B.3: Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two –step "how many more" and "how many less" problems using information presented in scaled bar graphs.	Sep: (CC) Feb: (SP) Mar: (CG) May: (CC)					Unit 8
3.MD.B.4 : Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units – whole numbers, halves, or quarters.				Unit 4	Unit 8	Gr.4

C. Geometric measurement: understand concept	s of area and relate area to	o multiplication and to a	ddition.			
3.MD.C.5: Recognize area as an attribute of plane	Feb: (CG)				Unit 5	Unit 6
figures and understand concepts of area	Mar: (CC)					
measurement						
a. A square with a side length of 1 unit, calle	d					
a unit square" is said to have "one square						
unit" of area and can be used to measure						
area.						
b. A plane figure which can be covered						
without gaps or overlays by <i>n</i> unit squares	i					
is said to have an area of <i>n</i> square units.						
3.MD.C.6: Measure areas by counting units squar	es Feb: (CG)	8B			Unit 5	
(square cm, square m square in, square ft, and	Mar: (CC)					
improvised units)						
3.MD.C.7: Relate area to the operations of	Nov: (CG)	2C		Unit 5	Unit 5	Gr. 4
multiplication and addition	Feb: (CG)	6D				
a. Find the area of a rectangle with whole	Mar: (CC, SP)	8B				
number side lengths by tiling it, and show						
that the area is the same as would be four	nd					
by multiplying the side lengths.						
b. Multiply side lengths to find areas of						
rectangles with whole number side length						
in the context of solving real world and						
mathematical problems, and represent						
whole-number products as rectangular						
areas in mathematical reasoning.						
c. Use tiling to show in a concrete case that						
the area of a rectangle with whole-number						
side lengths a and $b + c$ is the sum of $a \times b$						
and $a \times c$. Use area models to represent the	ne					
distributive property in mathematical						
reasoning.						
d. Recognize area as additive. Find areas of						
rectilinear figures by decomposing them						
into non-overlapping rectangles and addir	ig					
the areas of the non-overlapping parts,						
applying this technique to solve real world						
problems.						

3.MD.D.8: Solve real world and mathematical	Mar: (SP)	6D		
problems involving perimeters of polygons,		8C		
ncluding finding the perimeter given side lengths,				
finding an unknown side length, and exhibiting				
rectangles with the same perimeter and different				
area or with the same area and different perimeter.				
Geometry				
A. Reason with shapes and their attributes				
3.G.A.1 : Understand that shapes in different	Oct: (CG)	6A		
ategories (e/g., rhombuses, rectangles, and others)		6B		
may share attributes (e.g., having four sides), and		6C		
that the shared attributes can define a larger				
category (e.g., quadrilaterals). Recognize				
hombuses, rectangles, and squares as examples of				
quadrilaterals, and draw examples of quadrilaterals,				
and draw examples of quadrilaterals that do not pelong to any of these subcategories.				
3.G.A.2 : Partition shapes into parts with equal	Dec: (CG)	8D	Unit 4	
areas. Express the area of each part as a unit	May: (CG)	OD	Offic 4	
fraction of the whole.	iviay. (CO)			